Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses.

نویسندگان

  • Takayoshi Kobayashi
  • Yuichiro Kida
چکیده

Time-resolved transient absorption spectroscopy with sub-9 fs ultrashort laser pulses in the deep-ultraviolet (DUV) region is reported for the first time. Single 8.7 fs DUV pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. Electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of thymine over the full spectral range using a 128-channel lock-in detector. Vibrational modes of the electronic ground state and excited states can be observed as well as the decay dynamics of the electronic excited state. Information on the initial phase of the vibrational modes is extracted from the measured difference absorbance trace, which contains oscillatory structures arising from the vibrational modes of the molecule. Along with other techniques such as time-resolved infrared spectroscopy, spectroscopy with sub-9 fs DUV pulses is expected to contribute to a detailed understanding of the photochemical dynamics of biologically significant molecules that absorb in the DUV region such as DNA and amino acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Sub 10 fs Visible-NIR, UV, and DUV Pulses and Their Applications to Ultrafast Spectroscopy

In the first section of this Chapter, the basics of nonlinear optical (NLO) processes are systematically described. Then the generation of the visible pulse utilizing the NLO processes is described and ultrafast spectroscopy using the visible pulse is discussed. By using such short pulse, fast chemical reactions, which cannot be identified by utilizing strobe light or flash lamp, can be studied...

متن کامل

Ultrafast internal conversion of aromatic molecules studied by photoelectron spectroscopy using Sub-20 fs laser pulses.

This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*)-S1(nπ*) internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm). While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the ph...

متن کامل

Clean sub-8-fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy.

Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows...

متن کامل

Ultrafast dynamics of uracil and thymine studied using a sub-10 fs deep ultraviolet laser.

Single 9.6 fs deep ultraviolet pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. The electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of uracil and thymine over the full spectral range using a 128-channel lock-in amplifier detector. Two probe photon energy-...

متن کامل

Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy.

We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 18  شماره 

صفحات  -

تاریخ انتشار 2012